Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409216

RESUMO

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in elderly people and substantially affects patient quality of life. Oxidative stress is considered a key factor in the development of AD. Nrf2 plays a vital role in maintaining redox homeostasis and regulating neuroinflammatory responses in AD. Previous studies show that potassium 2-(1-hydroxypentyl)-benzoate (PHPB) exerts neuroprotective effects against cognitive impairment in a variety of dementia animal models such as APP/PS1 transgenic mice. In this study we investigated whether PHPB ameriorated the progression of AD by reducing oxidative stress (OS) damage. Both 5- and 13-month-old APP/PS1 mice were administered PHPB (100 mg·kg-1·d-1, i.g.) for 10 weeks. After the cognition assessment, the mice were euthanized, and the left hemisphere of the brain was harvested for analyses. We showed that 5-month-old APP/PS1 mice already exhibited impaired performance in the step-down test, and knockdown of Nrf2 gene only slightly increased the impairment, while knockdown of Nrf2 gene in 13-month-old APP/PS1 mice resulted in greatly worse performance. PHPB administration significantly ameliorated the cognition impairments and enhanced antioxidative capacity in APP/PS1 mice. In addition, PHPB administration significantly increased the p-AKT/AKT and p-GSK3ß/GSK3ß ratios and the expression levels of Nrf2, HO-1 and NQO-1 in APP/PS1 mice, but these changes were abolished by knockdown of Nrf2 gene. In SK-N-SH APPwt cells and primary mouse neurons, PHPB (10 µM) significantly increased the p-AKT/AKT and p-GSK3ß/GSK3ß ratios and the level of Nrf2, which were blocked by knockdown of Nrf2 gene. In summary, this study demonstrates that PHPB exerts a protective effect via the Akt/GSK3ß/Nrf2 pathway and it might be a promising neuroprotective agent for the treatment of AD.

2.
Acta Pharmacol Sin ; 45(2): 248-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833536

RESUMO

There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg-1·d-1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg-1·d-1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia. Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ácidos Cafeicos , Ferroptose , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/farmacologia , Traumatismo por Reperfusão/metabolismo
3.
J Clin Invest ; 134(3)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015626

RESUMO

Blood-brain barrier (BBB) disruption is a serious pathological consequence of traumatic brain injury (TBI), for which there are limited therapeutic strategies. Tissue inhibitor of metalloproteinase-2 (TIMP2), a molecule with dual functions of inhibiting MMP activity and displaying cytokine-like activity through receptor binding, has been reported to inhibit VEGF-induced vascular hyperpermeability. Here, we investigate the ability of TIMP2 to ameliorate BBB disruption in TBI and the underlying molecular mechanisms. Both TIMP2 and AlaTIMP2, a TIMP2 mutant without MMP-inhibiting activity, attenuated neurological deficits and BBB leakage in TBI mice; they also inhibited junctional protein degradation and translocation to reduce paracellular permeability in human brain microvascular endothelial cells (ECs) exposed to hypoxic plus inflammatory insult. Mechanistic studies revealed that TIMP2 interacted with α3ß1 integrin on ECs, inhibiting Src activation-dependent VE-cadherin phosphorylation, VE-cadherin/catenin complex destabilization, and subsequent VE-cadherin internalization. Notably, localization of VE-cadherin on the membrane was critical for TIMP2-mediated EC barrier integrity. Furthermore, TIMP2-mediated increased membrane localization of VE-cadherin enhanced the level of active Rac1, thereby inhibiting stress fiber formation. All together, our studies have identified an MMP-independent mechanism by which TIMP2 regulates EC barrier integrity after TBI. TIMP2 may be a therapeutic agent for TBI and other neurological disorders involving BBB breakdown.


Assuntos
Antígenos CD , Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Endoteliais/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo
4.
Brain Res Bull ; 198: 3-14, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076049

RESUMO

Depression is a leading cause of disability worldwide and the psychiatric diagnosis most commonly associated with suicide. 4-Butyl-alpha-agarofuran (AF-5), a derivative of agarwood furan, is currently in phase III clinical trials for generalized anxiety disorder. Herein, we explored the antidepressant effect and its possible neurobiological mechanisms in animal models. In present study, AF-5 administration markedly decreased the immobility time in mouse forced swim test and tail suspension test. In the sub-chronic reserpine-induced depressive rats, AF-5 treatment markedly increased the rectal temperature and decreased the immobility time of model rats. In addition, chronic AF-5 treatment markedly reversed the depressive-like behaviors in chronic unpredictable mild stress (CUMS) rats by reducing immobility time of forced swim test. Single treatment with AF-5 also potentiated the mouse head-twitch response induced by 5-hydroxytryptophan (5-HTP, a metabolic precursor to serotonin), and antagonized the ptosis and motor ability triggered by reserpine. However, AF-5 had no effect on yohimbine toxicity in mice. These results indicated that acute treatment with AF-5 produced serotonergic, but not noradrenergic activation. Furthermore, AF-5 reduced adrenocorticotropic hormone (ACTH) level in serum and normalized the neurotransmitter changes, including the decreased serotonin (5-HT) in hippocampus of CUMS rats. Moreover, AF-5 affected the expressions of CRFR1 and 5-HT2C receptor in CUMS rats. These findings confirm the antidepressant effect of AF-5 in animal models, which may be primarily related to CRFR1 and 5-HT2C receptor. AF-5 appears to be promising as a novel dual target drug for depression treatment.


Assuntos
Depressão , Serotonina , Ratos , Camundongos , Animais , Serotonina/metabolismo , Depressão/psicologia , Reserpina/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Antidepressivos/uso terapêutico , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...